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Abstract—With the thriving of location-based social networks,
a large number of user check-in data have been accumulated.
Tasks such as the prediction of the next check-in location can
be addressed through the usage of LBSN data. Previous work
mainly uses the historical trajectories of users to analyze users’
check-in behavior, while the social information of users was rarely
used. In this paper, we propose a unified location prediction
framework to integrate the effect of history check-in and the
influence of social circles. We first employ the most frequent
check-in model (MFC) and the user-based collaborative filtering
model (UCF) to capture users’ historical trajectories and users’
implicit preference, respectively. Then we use the multi-social
circle model (MSC) to model the influence of three social circles.
Finally, we evaluate our location prediction framework in the
real-world data sets, and the experimental results show that our
model performs better than the state-of-the-art approaches in
predicting the next check-in location.

Index Terms—Location-based social networks, Location Pre-
diction, Historical Trajectories, Social Circle

I. INTRODUCTION

Recent years have witnessed the popularity of smart mobile

devices and the development of location-acquisition tech-

niques, which make users’ location information much easier

to obtain than ever before. This development triggers the

emergence of location-based social networks (LBSNs) [1]

platforms such as Facebook Places, Gowalla, and Foursquare,

and so on. On these platforms, users can establish social links

and share their text content, photos, experience on the Points-

of-Interests (POIs). These user-generated activities, which are

closely related to some places, are called “check-in”. In a LB-

SN, the application provides location service for user check-

in at real physical places. As a consequence, a large amount

of user activity data can be obtained, especially the posts of

check-in in a LBSN. One of the essential tasks in LBSNs is

to utilize the user’s check-ins to predict the user’s next check-

in location, which not only benefits a series of location-based

services such as urban computing, POIs recommendation [2],

but also makes a better understand human mobility patterns

[3].

As check-in data contains rich information, more and more

researchers use them to study the problem of location predic-

tion in the present stage. Traditional researches mainly focus

on utilizing the individual historical footprints to predict the
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next check-in location [4], [5], [6], while social friendship

information is rarely used. The success of these methods

is mainly based on the observation of the user’s historical

information. However, the prediction performance only using

historical records of the user is limited. Therefore, it is a

meaningful and challenging task for improving performance

in location prediction. Social connection is an indispensable

part of the location-based social network. In papers [7], Ye

and Cho revealed that users’ movement is usually affected to

a certain extent by their social relations, such as having dinner

with families in a famous restaurant, travelling by following

friends’ recommendations, and so on. Undoubtedly, social

relationships are important to users. Thus, the availability

of social networks provides an opportunity to solve check-

in prediction. Motivated by these, the goal of this paper is

to develop effective algorithms to predict the next check-in

location of the user from the perspective of the footprint and

the friendship.
In this paper, we propose a unified location prediction

framework to integrate the user’s history check-ins and the

influence of social circles. Specifically, this framework is

divided into two modules: (1) personal historical behavior

pattern (2) the influence of social circles. Our work first

presents the comprehensive study of social relation and then

solves next check-in location prediction from the perspective

of a new social relationship. Finally, We further evaluate our

model in the real-world dataset. The experimental results show

that our model performs well in predicting the next check-in

location.
In summary, the main contributions of this paper are divided

into four aspects, as follows:

• We study the problem of predicting the check-in location

with footprint and social relation of the user in location-

based social network.

• We put forward the concept of the social circle and model

the influence of social circles on user check-in.

• We propose the most frequent check-in model (MFC)

and the user-based collaborative filtering model (UCF)

to capture user’s historical trajectories and users’ im-

plicit preference, respectively. And we use the multi-

social circle model (MSC) to model the impact of social

relationships on user check-in. We integrate the above

modules together and present a unified framework (MUC)
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to predict user’s next check-in locations.

• We evaluate our MUC prediction framework on large-

scale real-world datasets for predicting next check-in

location. The experimental results outperform state-of-

the-art methods in accuracy aspect.

The rest of this paper is organized as follows. Section II

reviews the related work. Section III introduces the concept

of social circles. Section IV formalizes our research problem

and presents the proposed model in details. Section V reports

the experimental results. Finally, we draw some conclusions

of this study in Section VI.

II. RELATED WORK

One of the main research tasks in location-based social

networks is to predict the location of the user. Early work relies

mainly on the GPS data collected by cell phones and bluetooth

devices [8]. However, some of the obvious drawbacks of the

data are poor social relationships and low accuracy. Currently,

owing to the development of location-based social services,

the way to obtain LBSN data is simpler and more efficient.

The LBSN data contains four information layers: a content

layer, a social layer, a geographical layer, a temporal layer.

The content layer is user-generated photos, audios, videos and

words, which record the behavior of the user in interesting

locations. The social layer contains the social relationship

information about the user, the geographical layer contains

the location information checked in by the user, and the

temporal layer represents the time stamps information of the

user’s check-in action. In the following, we review some main

researches in these aspects mentioned above.

The content-based approach focuses on the location infor-

mation mentioned in the post. In papers [9], [10], authors re-

sorted to the content of posts to estimate a user’s location. The

availability of the temporal layer information presents different

views to study the user’s location. The temporal information of

users’ check-in action has two properties in [11], [12]: strong

temporal cyclical, short-term effect. However, the above two

methods have limited performance without the user history

check-in data.

Efforts have also been made to utilize users’ historical

records for improving the performance of location prediction.

In paper [4], Chang et al. found that users always like to check

in where they often visit and proposed a logistic regression

model to predict users next check-in locations. The difference

from our paper is that although the method takes into account

users’ historical trajectory, it doesn’t consider users’ implicit

preference. In paper [7], studies on human mobility pattern

showed that the user’s behavior can be affected to a certain

extent by his social relations. Social relation of the user plays

a key role for predicting location. Many scholars began to

investigate the relationship between space trajectory and social

networks, and hoped to use mixed information to predict the

check-in location in [12], [13]. Compared with the papers we

mentioned above, our division of users’ friendship is more

comprehensive in this paper.

(a) Ratio of co-occurrences for each
social circle

(b) Distribution of co-occurrences for
each social circle

Fig. 1. Characteristics on social circle on Foursquare

III. SOCIAL CIRCLES ON LBSNS

In this section, we first define the concept of the social

circle. Then, to better explain the influence of the user’s social

circle, we need to investigate the characteristics of the three

social circles.

A. Social Circle Definition

When we analyse check-in behavior of the user, there are

two situations: checked in at locations alone, or with friends

and family. Users always like to do something with their

friends. By analyzing datasets (more details about the datasets

in section V), we find that people who have checked in the

same location with the user are social friends, geo-neighbors,

and unrelated strangers. Therefore, these friends are most

likely to affect the user’s check-in behavior. We consider these

friends as three different social circles for the user. Defined as

follows:

Definition 1 (n-hop social friends): The social friends are

the set of users who have socially connected with the user

in LBSNs. According to the structure of the LBSN network,

we further expand to n-hop social friends, which is expressed

in n-SF, and n denotes n-th hop of the user nodes on social

network, for example, 1-SF are friends directly connected with

the user, 2-SF denote friends of 1-SF of the user.

Definition 2 (cocheck-in location friends): The common

check-in location friends are the set of users who check-in

the locations same with the user, which is denoted as LF.

Definition 3 (k-nearest neighbor friends): The k-nearest

neighbor friends are the set of users who are geographically

close to the user’s home, which is denoted as k-NF, and k is

the number of friends.

B. Characteristics On Social Circle

To model the influence of the social circle, we investigate

check-in habits of users’ friends. Due to space limit, we only

present analysis on Foursquare, and the Gowalla is similar to

it. For any user, we first count the number of co-occurrences

between friends in each social circle. Then, the ratio of co-

occurrences for each social circle can be shown in Fig. 1(a).

The x-axis represents the number of observed co-occurrences

in an ascending order, and the y-axis denotes the ratio of co-

occurrences. Note that the n and k are set to 1 and 20 here,
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respectively. The graph shows that the percentage of pairs of

friends who have common check-in locations within 50 times

is about 90%. The above percentage is approximately the same

for each social circle. We guess that the cause of a large

number of correlated check-in behaviors is that users might

share POIs to friends or check in with friends.

How much of the impact each social circle has the user?

We further investigate the check-in patterns of correlations

between the user and his social circles. We plot the distri-

bution of co-occurrences as the number of observed check-

ins increases in Fig. 1(b). From the figure we can see that

as the number of observed check-ins increases, the ratio of

co-occurrences also increases, and eventually becomes stable.

The reason for this trend may come from two parts: (1) the

user hasn’t social circles and historical records when he starts

to use this application; (2) as time goes on, the user’s social

circle friends and check-ins also increase. Note that the three

social circles may overlap.

IV. PROPOSED MODEL

A. Problem Definition

For convenience, we difine U = {u1, u2, . . . , un} as

a set of users, L = {l1, l2, . . . , lm} as a set of loca-

tions, where n, m represents the number of users and

locations. User ui check-in at location lj at time tk
can be expressed as user’s check-in trajectory C, where

C = {〈u1, l1, t1〉 . . . 〈ui, lj , tk〉}. Let n–SFu, LFu, k–NFu

denote n-hop social friends, cocheck-in location friends, k-

nearest neighbor friends of the user u, and HCu,t =
{〈ui, l1, t1〉 . . . 〈ui, lj , tk〉 | ui = u, tk < t} be the set of his-

torical check-ins of the user u before the time t. In the same

way, SCu,t = {〈ui, l1, t1〉 . . . 〈ui, lj , tk〉 | ui ∈ Fu, tk < t} be

the set of historical check-ins of the user’s friends before the

time t, where Fu is a set of friends of the user’s social circle.

The user’s next check-in location l? at time t is mainly

affected by two aspects: personal historical behavior pattern

and social circle friends’ influence. Hence, we formalize the

problem of predicting the user’s next check-in location as

follows. Given the HCu,t and SCu,t, our aim is to calculate

the probability of the next location visited by the user at time

t. Based on the above explanation, we define the probability

as:

P t
u (l) = P t

u (l|HCu,t, SCu,t) (1)

Based on the common assumption of modeling human

movement behavior in LBSNs [14], [15], we consider personal

footprint and social influence as two independent modules and

propose a combination of methods similar to [15]:

P t
u (l|HCu,t, SCu,t) =αP

t
u (l|HCu,t)

+ (1− α)P t
u (l|SCu,t)

(2)

where α is a constant controls parameter.

B. Personal Historical Behavior Pattern

In this module, we use the most frequent check-in model

and the user-based collaborative filtering model to capture

the user’s historical trajectories and implicit preferences. By

means of weighted methods, the probability P t
u (l|HCu,t) can

be further written as:

P t
u (l|HCu,t) =βP

MFC
u (l|HCu,t)

+ (1− β)PUCF
u (l|HCu,t)

(3)

where β is the constant parameter that controls the weight of

users’ historical trajectories and implicit preferences.

1) MFC Model: The check-in frequency of a location

in the user’s history check-ins is an important indicator of

location prediction [4]. In this study, we prefer to use the most

frequent check-in model (MFC) to capture the user’s historical

preferences. It can be expressed in the following formula:

PMFC
u (l|HCu,t) =

∣∣∣{ck | ck ∈ Cu, ck = l, t
′
< t

}∣∣∣
|Cu| (4)

where ck is current location of the user, and Cu is a set of the

user’s check-ins.

2) UCF Model: Based on common sense that similar users

have similar preferences, the user-based collaborative filtering

method (UCF) can capture users’ implicit preference. Let R
represents a check-in matrix of user-location. The ri,j is an

entry of the check-in matrix R, and ri,j = 1 or 0, where

1 denotes that the user ui ∈ U checked in at this location

lj ∈ L and 0 is the oppsite. We represent the probability by

PUCF
u (l|HCu,t), and denote as follows.

PUCF
u (l|HCu,t) =

∑
uk
wi,k· rk,j∑
uk
wi,k

(5)

where wi,k is the similarity weight between ui and uk. In

this study, we adopt cosine similarity measure and denote as

follows.

wi,k =

∑
j∈L ri,j · rk,j√∑

j∈L r
2
i,j

√∑
j∈L r

2
k,j

(6)

C. The Multi-Social Circle

In this section we calculate the social circle coefficient and

measure social influence strength. Based on weighted methods,

the multi-social circle model can be further written as:

P t
u (l|SCu,t) =ψ1P

t
u (l|LFu,t) + ψ2P

t
u (l|k–NFu,t)

+ ψ3P
t
u (l|n–SFu,t)

(7)

where ψ1, ψ2, and ψ3 are three correlation coefficients,

P t
u (l|LFu,t), P

t
u (l|k–NFu,t) and P t

u (l|n–SFu,t) are social

influence strength.
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TABLE I
CHECK-IN FEATURES IN THE SOCIAL CIRCLES

Feature Description
Nf

X Number of friends in X social circle

Nc
X Number of check-in in X social circle

Ncc
X Number of cocheck-in in X social circle

Nnc
X Number of new check-in in X social circle

1) Social Circle Coefficient: It can be seen from Fig. 1(b)

that the distribution of co-occurrences increases with the

increase of the number of observed check-ins at the beginning,

and eventually tends to stabilize. Based on the characteristics

of the figure, we find that the trend of the curve is similar

to the sigmoid function. Inspired by the paper [16], we

set correlation coefficients ψ1, ψ2, ψ3 as sigmoid activation

functions, which consider a set of features capturing social

friends’ influence. We take ψ1 for example, and the other two

correlation coefficients are the same.

ψ1 =
1

1 + e−(w1
T f1u,t+b1)

, 0 ≤ ψ1 ≤ 1 (8)

where f1u,t is a check-in feature vector of user’s friends in LF

social circle, w1 is a weight vector of f1u,t and b1 is the bias.

In this study, here are four significant features defined for each

user’s social circle in the Table I. Note that f1u,t is the feature

vector before the time t.

2) Social Influence Strength: The potential check-in lo-

cations of the user may be related to check-in locations

of friends. In this study, social influence strength based on

social friends can be realized by the friend-based collaborative

filtering (FCF) method. We take LF for example and define

the P t
u (l|LFu,t) as follows.

P t
u (l|LFu,t) =

∑
uk∈Fu

SIi,k· rk,j∑
uk∈Fu

SIi,k
(9)

where SIi,k is the friend similarity between ui and uk, and

Fu is a set of friends of LF social circle. In this study, we

adopt the friend similarity that mixed social links and check-in

locations [17].

SIi,k = η
|Fi ∩ Fk|
|Fi ∪ Fk| + (1− η) |Li ∩ Lk|

|Li ∪ Lk| (10)

where η is a tuning parameter ranging within [0, 1], Fk and

Fi are the set of friends of social circle, Lk and Li are the set

of check-ins of uk and ui, respectively.

D. Unified Framework

We propose the unified framework (MUC) based on person-

al history module and social circle module, to predict a user’s

next check-in location.

Therefore, according to (3) and (7), the final framework can

be expressed as follows:

P t
u (l) = α

(
βPMFC

u (l|HCu,t) + (1− β)PUCF
u (l|HCu,t)

)

+ (1− α)
(
ψ1P

t
u (l|LFu,t) + ψ2P

t
u (l|k–NFu,t)

+ ψ3P
t
u (l|n–SFu,t)

)

(11)

E. Parameter Inference

According to (11), we can see that only social module need

parameter learning, which greatly simplifies our work. Thus,

the product of the probability on the whole set of data can be

defined as follows:

P (C|Θ) =
∏

(u,l,t)∈C
P t
u (l) (12)

where Θ = {w′1,w′2,w′3} denotes all parameters to be

estimated, and the w′1 contains w1, b1, the w′2 is composed

of w2 and b2, the w′3 consists of w3, b3. The problem can

be further converted to the following minimization problem.

And, all parameters are learned by maximum likelihood.

min
∑

u,l,t∈C
− lnP (C|Θ)

+ λ
(‖w′1‖22 + ‖w′2‖22 + ‖w′3‖22)

(13)

where λ is the regularization term that avoids overfitting. The

λ is set to 0.05 in our study.

V. EXPERIMENTAL RESULTS AND ANALYSIS

In this section, we first introduce datasets. Then we discuss

the location prediction performance of MUC.

TABLE II
STATISTICAL INFORMATION OF THE TWO DATASETS

statistical item Foursquare Gowalla

Number of users 11,326 107,092

Number of locations 182,968 1,280,969

Number of chekc-ins 1,385,223 6,442,890

Number of social links 47,164 950,327

A. Datasets Description

In this study, we perform our experiment on the public

dataset. We choose Foursquare [16] and Gowalla [7] to eval-

uate the performance of the MUC framework. The statistics

of the datasets are shown in Table II. Note that 1-hop social

friends of users are also provided. Since the user’s k-nearest

neighbor friends were used in the model, we use recursive

grid method [12] to estimate the home location of the user.

We empirically select users who have at least 80 check-

ins and remove POIs that have fewer than 20 check-ins. In

our experiments, we divide the dataset into training set and
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testing set in terms of the user’s check-in time instead of

choosing a random partition method. Hence, 70 % check-ins

of each user are selected for training, and 30% for testing, in

a chronological order.

B. Experiment Setup

According to the characteristics of the three social circles,

we respectively set the parameter η to 0.2, 0.5, 0.7, correspond-

ing to the LF, the k–NF, the n –SF. The parameters ψ1, ψ2,

ψ3 can be learned by training the model. For the parameters

α, β, n, k, we will discuss the influence of them in the section

V-F.

C. Evaluation Metrics

We use prediction accuracy metric to evaluate the perfor-

mance of the model. We calculate a probability for each can-

didate location and return the top-N highest ranked locations

as predictions for the user. As long as the actual check-in

locations are in top-N predicted in the training, we consider the

prediction is correct. We employ the Accuracy@N represent

the prediction accuracy of different N. In our experiment, N

= 1, 2, 3.

D. Baseline Methods

To illustrate the performance of our proposed location pre-

diction framework, We thus introduce the following baseline

methods to compare.

• SHM [13] is proposed by Gao et al. It integrates historical

and social effects to predict the location of the user.

• SHM-H is the historical model of the SHM. The Hierar-

chical PitmanYor process is used in this model to capture

power-law distribution and short term effect of check-in

behavior.

• SHM-S is the social model of the SHM. Unlike our

model, the model only uses binary friends information.

• MUC-H is the historical model of our framework that

only uses the information from personal historical trajec-

tories.

• MSC is the multi-social circle model that only uses the

information from social circle friends.

E. Performance Comparison

The Fig. 2 shows the prediction results on both datasets.

Based on the result of Foursquare, we can see that MUC has

the best performance across all models. From the Fig. 2(a)

we observe that our model MUC has an average accuracy of

89% accuracy, but the SHM algorithm is less than 43%. Our

historical model (MUC-H) performs better than the baseline

method (SHM-H) and improves performance by 50%. We

guess the reason for the performance gap is that we use

the user-based collaborative filtering model to capture users’

implicit preference in the history module. MSC also presents

high accuracy in all social modules. In addition, our social

model (MSC) is worse than the MUC-H model, but better

than the SHM-S.

From the Fig. 2(b) we can see that the MUC also performs

best on Gowalla. The SHM-S is the lowest accuracy among all

(a) Performance of the MUC on
Foursquare

(b) Performance of the MUC on
Gowalla

Fig. 2. Performance comparison in terms of prediction accuracy

(a) Performance of different weight
α

(b) Performance of different weight
β

Fig. 3. Performance of different weight on Foursquare

the models. The other situations are similar to the performance

on the Foursquare. From the above social module comparison

we know that the social relationship has a certain impact on the

user’s check-in behavior, but not the dominant. Users’ implicit

preferences also play an important role in predicting the next

check-in location.

F. Parameter Selection

Due to limited space, we only present the parameter selec-

tion process on Foursquare data. For α and β, each of which

varies from 0 to 1 with an increment step of 0.1, we carry out

100 tests. By observing the results, we find that when α= 0.7

and β = 0.8 hits the best performance. Increasing the parameter

β from 0 to 1 with an increment step of 0.1 and fixing α =

0.7, we can see that when β = 0.8 hits the highest accuracy

from the Fig. 3(b). It shows that users’ implicit preference is

very important in historical module. The parameter α is used

to control the weight of historical and social module. Setting

α from 0 to 1 with an increasing step of 0.1 and fixing β
= 0.8, we can observe the changes in performance from the

Fig. 3(a). Some interesting insights can be observed:

• When α = 0, only the influence of the social circle is

considered. Its prediction accuracy is the worst. It shows

that only using social information is not good enough to

predict user behavior.

• When α = 0.7, the performance hits the highest pre-

diction accuracy. It is the best weight of the social

module and the historical module. We observe that the

historical module has a higher weight, indicating that the
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(a) Performance of the MSC on dif-
ferent k

(b) Performance of the MSC on dif-
ferent n

Fig. 4. k of k-NF and n of n-SF

user’s historical module is more important than the social

module.

• When α = 1, this situation only considers the historical

trajectories of users, without the influence of the social

circle. Its accuracy is not the best, suggesting that social

influence is also important.

For the k-nearest neighbor friends of the user, we set

k as a variable parameter. So we set k to 5, 10, 15, 20,

respectively. In our experiment, we choose the MSC to observe

the performance of the prediction. The Fig. 4(a) shows the

change in the prediction accuracy at different number k. From

the figure we can observe that the performance of the MSC

is increasing at different top-N with the increase of the k. We

can draw the conclusion that the impact of neighbors’ friends

on users is obvious. For the n-hop social friends of the user,

we set n to 1, 2, respectively. According to Dunbar’s number,

we know that the number of social friends of any person is

limited. Users keep a close contact with a part of social friends,

so these close friends have a greater impact on users. As shown

in the Fig. 4(b), we observe that the performance of the MSC

is descreasing as n increases. We guess the reason for this

phenomenon is that too many social friends weaken the impact

of close friends.

VI. CONCLUSION

In this paper, we proposed a unified location prediction

framework (MUC) to integrate the user’s history check-ins

and the influence of the social circle. In the historical behavior

pattern, we employed the most frequent check-in model (MFC)

and the user-based collaborative filtering (UCF) model to

capture user’s historical trajectories and implicit preference,

respectively. In the social circle module, we used the multi-

social circle model (MSC) to model the impact of social

circles. We evaluated our location prediction framework in the

real-world datasets. The experimental results showed that our

model performs well in predicting the next check-in location.
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