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Abstract—The increasing prevalence of location-based social
networks (LBSNs) poses a wonderful opportunity to build per-
sonalized point-of-interest (POI) recommendations, which aim at
recommending a top-N ranked list of POIs to users according to
their preferences. Although previous studies on collaborative fil-
tering are widely applied for POI recommendation, there are two
significant challenges have not been solved perfectly. (1) These
approaches cannot effectively and efficiently exploit unobserved
feedback and are also unable to learn useful information from
it. (2) How to seamlessly integrate multiple types of context
information into these models is still under exploration. To
cope with the aforementioned challenges, we develop a new
Personalized pairwise Ranking Framework based on Poisson
Factor factorization (PRFPF) that follows the assumption that
users’ preferences for visited POIs are preferred over potential
POIs, unvisited POIs are less preferred than potential POIs.
The framework PRFPF is composed of two modules: candidate
module and ranking module. Specifically, the candidate module
is used to generate a series of potential POIs from unvisited
POIs by incorporating multiple types of context information
(e.g., social and geographical information). The ranking module
learns the ultimate order of users’ preference by leveraging the
potential POIs. Experimental results evaluated on two large-scale
real-world datasets show that our framework outperforms other
state-of-the-art approaches in terms of various metrics.

Index Terms—Location-based Social Networks, POI Recom-
mendation, Unobserved Feedback, Ranking

I. INTRODUCTION

In recent years, location-based social networks (LBSNs)
such as Foursquare, Yelp, and Facebook Places are becoming
increasingly popular as users can easily post their real location
and location-related contents in the physical world via these
online systems. In LBSNs, users can establish social links with
others to share their experiences of visiting some Point-of-
Interests (POIs), e.g., parks, restaurants and cinemas, through
making check-ins at these POIs via their mobile devices. The
huge volume of data in LBSNs contain valuable information
about POIs and users, which can be exploited for building
personalized POI recommender systems. POI recommendation
has become an important research task in LBSNs, as it not only
helps users to explore new interesting places, but also benefits
for LBSNs businesses to place advertisements to targeted
customers.

* Corresponding author.

The aim of POI recommendation is to generate a top-N
ranked list of POIs that a user might be interested in but has not
visited before. Most of the existing recommendation methods
[1], [2], [3], [4] mainly apply Collaborative Filtering (CF)
technique to suggest novel POIs to users. Among these CF
techniques, memory-based (e.g., user-based) and model-based
(e.g., matrix factorization) are two widely adopted approaches
for POI recommendation. The two approaches first predict a
rating by modeling the user’s preference on a POI. Then the
top-N ranked list of POIs suggestions is obtained by sorting
the predicted user-POI ratings. However, in practice, POI
recommender systems pay more attention to the top-N ranked
list of POIs rather than the predicted ratings, hence ranking-
based models (i.e., learning-to-rank) that aim to generate
accurate ranked lists of POIs are more useful than rating
prediction-based models [5], [6]. In other words, previous
works on CF are not as effective as the ranking-based models
in addressing the recommendation task related to POIs [7].
Hence, there seems a large marginal space left to improve the
performance of POI recommendation by extending ranking-
based models. In addition, there are two obvious challenges
that need to be addressed urgently in previous works on
CF. (1) These works usually ignore missing values and are
unable to exploit and learn useful contribution information
from unobserved feedback, because they cannot distinguish
the real negative feedback and missing values [5]. (2) How to
seamlessly utilize multiple types of context information, e.g.,
users’ social links [1], geographical distance of POIs [8] and
category information of POIs [9], is still under exploration.

In view of the aforementioned challenges, we propose a new
Personalized pairwise Ranking Framework based on Poisson
Factor factorization (PRFPF) to build the personalized POI
recommender system. In the PRFPF, we make the generic
assumption that the user’s preferences for visited POIs are
preferred over potential POIs, unvisited POIs are inferior to
potential POIs. The potential POIs can be deemed as potential
feedback, which is treated as weak preference relative to
positive feedback while as strong preference in comparison to
other unobserved feedback. More specifically, our recommen-
dation framework consists of two modules, one of which is
the candidate module and the other is the ranking module.
The candidate module is to learn a series of potential POIs
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(potential feedback) from unvisited POIs for each user by
exploiting multiple types of contextual information, e.g., social
and geographical information.

For the ranking module, we use the potential feedback
generated by the candidate module as input. According to
our assumption, the module learns total preference ranking for
each user by utilizing two pairwise preferences comparison:
visited POIs and potential POIs, and potential POIs and the
remaining unvisited POIs. To be specific, by introducing our
assumption, we augment the ranking function of Bayesian
Personalised Ranking (BPR) [5], which only considers pair-
wise preference comparison over observed and unobserved
feedback. Since Poisson distribution is more suitable for fitting
check-in frequency data than Gaussian distribution [1], we
propose the Poisson factor factorization to model the differ-
ence of two preference prediction. Furthermore, we design
a mini-batch gradient descent (MBGD) with the bootstrap
sampling algorithm to optimize its objective function. Finally,
experimental results on two large-scale real-world datasets
demonstrate the effectiveness of our proposed framework
compared to several state-of-the-art methods.

The main contributions of this paper can be summarized as
follows:
• We propose a new Personalized pairwise Ranking Frame-

work based on Poisson Factor factorization (PRFPF) for
POI recommendation. The PRFPF follows the assumption
that users’ preferences for visited POIs are preferred over
potential POIs, unvisited POIs are inferior to potential
POIs. Moreover, the PRFPF consists of two modules:
candidate module and ranking module.

• The candidate module in PRFPF is designed for gen-
erating a series of potential POIs from unvisited POIs
by exploiting multiple types of context information (i.e.,
users’ social links, geographical information).

• The ranking module in PRFPF learns the ultimate order
of users’ preference by leveraging two pairwise prefer-
ence comparison: visited POIs and potential POIs, and
potential POIs and the remaining unvisited POIs.

• We conduct extensive experiments on two large-scale
real-world datasets to evaluate the performance of PRFPF.
Experimental results show that our framework outper-
forms other state-of-the-art methods in terms of various
metrics.

The rest of this paper is organized as follows. Section II
presents related work on POI recommendation. Section III
formulates the problem and introduces the necessary back-
ground information. Section IV describes the recommendation
framework in details. Section V provides an experimental
evaluation of the PRFPF. Finally, we draw some conclusions
of this study in Section VI.

II. RELATED WORK

In this section, we review relevant studies based on collabo-
rative filtering and ranking-based methods for POI recommen-
dations.

Collaborative Filtering in POI Recommendations.
Memory-based and matrix factorization (MF) [10] are two
widely used collaborative filtering methods in POI recommen-
dations. Memory-based methods can be grouped into user-
based CF and item-based CF. The user-based CF generally
uses two steps to make POI suggestions. It first finds similar
users to the target user by using a similarity measure based
on users’ ratings or check-ins, such as Cosine similarity or
Pearson correlation. Then the prediction score is calculated
by weighting average of all the ratings from similar users.
Similarity, the item-based CF works according to the user’s
preferences on other similar items. The friend-based CF [8]
is a variant of the user-based CF, which can be realized by
leveraging check-ins of social friends. MF [10] has gained a
large popularity due to its effectiveness in dealing with the
user-POI check-in matrix. Cheng et al. [1] first integrated
social information into MF to improve the quality of POI
recommendation. Weighted matrix factorization (WMF) [11],
[3] by assigning different weights for positive and negative
examples is also designed for POI recommendations. Besides,
Lian et al. [3] incorporated the geographical information
into MF to enhance recommendation performance. All the
methods mentioned above are essentially rating prediction-
based models, and performance improvements are limited.

POI Recommendation Approaches Based on Ranking.
Bayesian personalized ranking (BPR) [5] is a pairwise rank-
ing method, which focus on modeling the ranking of the
feedback. It learns the ranking based on pairwise preference
comparison over observed and unobserved feedback such that
the Area Under the ROC Curves (AUC) can be maximized
[12]. From the perspective of ranking tasks, these CF-based
methods mentioned above can be viewed as pointwise methods
[13]. Empirical studies [13], [6], [4] have demonstrated that
pointwise methods are generally less effective than pairwise
ranking methods. Matrix factorization-based BPR (BPR-MF)
[5] is the most commonly used and effective ranking-based
model for POI recommendation. Li et al. [14] proposed a
ranking method based geographical factorization to make POI
recommendations. Yuan et al. [12] proposed GeoBPR model
that injects users’ geo-spatial preference.

In this paper, the framework PRFPF we proposed differs
from the existing CF and ranking approaches in three aspects.
First, PRFPF makes a generic assumption that users’ pref-
erences for visited POIs are preferred over potential POIs,
unvisited POIs are less preferred than potential POIs. Second,
PRFPF is capable of integrating multiple types of context
information, i.e., not limited to social or geographical ones.
Third, PRFPF models the check-in frequencies by using the
Poisson distribution instead of Gaussian distribution.

III. PRELIMINARIES

In this section, we first formulate the POI recommendation
problem in LBSNs. Then we provide background on Bayesian
Personalised Ranking, which serves as the building block for
our recommendation framework.



A. Problem Definition

The problem of personalized POI recommendation is to
generate a top-N ranked list of POIs that a user might be
interested in but has not visited before by leveraging users’
historical check-ins and other available context information in
LBSNs. Let U = {u1, u2, ..., um} be a set of users, where each
user ui checked in some POIs L+

ui
. Let L = {l1, l2, ..., ln} be

a set of POIs, where each POI has a location lj = {lonj , latj}
in terms of longitude and latitude. For convenience, we term i
as user ui and j as POI lj , unless stated otherwise. The user-
POI check-in matrix is represented as F ∈ Rm×n, where each
entry fij denotes the check-in frequency of user i on POI j.

In this paper, we consider three different types of feedback,
namely positive, potential and negative feedback. The positive
feedback is defined as a set of POIs previously visited by
user i: Pi = L+

i . The potential feedback LPi = {l1, ..., lc}
is learned from unvisited POIs and divided into social and
geographic feedback in detail. The remaining unvisited POIs
are viewed as the negative feedback Ni = {l1, ..., lh}. Here
negative only means no explicit feedback can be observed
from the user and does not denote users’ dislike of the POIs.

B. Bayesian Personalized Ranking

Bayesian personalized ranking (BPR) learns the ranking
based on pairwise preference comparison over observed and
unobserved feedback. Its optimization criterion by maximizing
posterior estimator with Bayesian theory is proposed by [5],
[12]. For user i, the ranking order of his preference is defined
as follows:

j �i h⇔ j ∈ L+
i ∧ h ∈ L \ L

+
i , (1)

where �i is the total order, which denotes latent preference
structure desired by the user.

Then the BPR pairwise ranking function can be given:

r̂ijh (Θ) := x̂i,j − x̂i,h, (2)

where Θ represents a set of parameters, r̂ijh (Θ) is the ranking
function that user i prefers POI j over POI h, x̂i,j and x̂i,h
are the predicted check-in frequencies.

IV. POI RECOMMENDATION FRAMEWORK

A. Candidate Module

The candidate module consists of two building blocks:
social and geographic models. Each model learns a series
of potential feedback from unvisited POIs for each user by
exploiting the corresponding information.

1) Social Model:
Social friends are acting as an important role in people’s life.

Users always turn to friends they trust for movie or restaurant
recommendations, and their tastes or behaviors can be easily
affected by these friends. Many previous studies [4], [15] have
indicated that social friends can help improve the performance
of POI recommendation to a certain extent. That is, users
might be interested in those POIs which have been checked
in by their friends. Inspired by this research [16], we use

social relationships to generate a set of social feedback instead
of directly predicting real-valued scores to recommend POIs,
which is different from traditional approaches on CF [17], [9],
[1]. The friend-based CF (FCF) [8] is an effective algorithm in
LBSNs, which mainly relies on the similarity between the user
and his friends. However, the similarity used in this method is
only leverages the 1-hop friendship [15] relation and ignores
the local structure information of the user node in LBSNs. For
instance, 2-hop neighbors of user node (i.e., friends of friends)
are also likely to affect the user’s check-in behavior but are
overlooked.

Hence, we propose a novel friend-based CF based on net-
work representation learning technique (i.e., Struct2vec [18]),
which aims at learning low-dimensional vector representation
for each user by capturing local structural information of nodes
in LBSNs. The effectiveness of Struct2vec has been verified
by classification task [18]. For the sake of convenience, the
Friend-based CF based on Struct2vec is named as FCFS.

The FCFS can be described as follows.

ĉij =

∑
s∈SFi

SIi,s· fs,j∑
s∈SFi

SIi,s
, (3)

where ĉij is the predicted score of user i at POI j, SIi,s is
the similarity between user i and friend s, SFi is a set of
the user’s social friends, and fs,j is the check-in frequency of
friend s at POI j.

We define SIi,s using a combination of Kernel function and
similarity of check-in, which differs from previous work [8].

SIi,s = ψexp(−||gi − gs||2

σ2
) + (1− ψ)

|L+
i ∩ L+

s |
|L+
i ∪ L

+
s |
, (4)

where gi ∈ Rk and gs ∈ Rk are two 5-dimensional vectors
learned by Struct2vec [18], ψ is a tuning parameter ranging
with [0,1], and σ is a scale parameter that can be tuned by
a local scaling technique. The first term of (4) measures the
social relations in LBSNs. The second indicates the common
check-in ratio between the user and his friends.

Finally, we sort all POIs that users’ friends visited in
accordance with their scores to acquire the Top-t1 as social
feedback for each user, where t1 is the number of potential
POIs we defined. There are two distinct advantages of using
the FCFS in comparison with the FCF. First, the FCFS can
capture local structure information of user node. Second, the
FCFS alleviates the sparsity problem of social links to a certain
extent and is friendly to the user with fewer friends.

2) Geographic Model:
Unlike traditional items (e.g., books, films and music)

recommendation, the POI recommendation task needs to phys-
ical interactions between users and locations. Therefore, the
geographical information of POIs represented by longitudes
and latitudes is a significant factor that affects users’ check-in
decision-making. In this paper, we are committed to studying
how geographical distance influences users’ check-in choices.
First, the work [1] clustered the user’s whole historical check-
ins and found these locations are around several centers (e.g.,
home, office and travel places). Enlightened by this, the



distance between each center and POIs should be taken into
account because it measures the distance cost of the user’s
check-in. For instance, one user has a small probability to visit
a distant POI, even if he is interested. In other words, the user
tends to visit POIs close to his centers. Second, this research
[8] showed that the user may be interested in exploring nearby
POIs of a POI that he likes, even though it is far away from
home. For example, one user has a great chance to go to nearby
famous restaurants to eat after shopping. Thus, we argue that
the distance among POIs also has a significant influence on
users’ check-in behavior due to the user’s preference on nearby
POIs.

For the first distance, we use the following distance measure
to find the t2 POIs closest to each center of the user, where
t2 is the number of potential POIs.

d(j, o) = ||lj − lo||2, (5)

where ||.|| denotes the Euclidean norm in the geographical
space and lo ∈ Mi, where Mi represents multi-centers of the
user i. We apply a greedy clustering algorithm [1] to find the
multi-centers Mi. More details are shown in [1].

For the second distance, we present the method based on
Gaussian Kernel function to discover the t3 POIs that are
closest to locations the user has checked in.

Sco(i, j) =
∑
lk∈L+

i

exp(−Υi

2
||lj − lk||2), (6)

where Sco(i, j) denotes the distance relevance score of i at j,
and Υi is a personalized adaptive bandwidth that depicts the
user’s activity area.

Υi = max
{
||lk − hi||2

}
, lk ∈ L+

i , (7)

where hi indicates the user’s home.
In the end, we merge the potential POIs produced by the

above two ways and regard them as the final geographic
feedback.

B. Ranking Module

In this section, we first formalize our model assumption
regarding positive, potential, and negative feedback. Then we
describe the proposed ranking model. Finally, we present the
process of parameter estimation.

1) Model Assumption:
As mentioned in Section III-B, the basic assumption of BPR

is that the user prefers an observed POI over all unobserved
POIs. However, this assumption suffers from an obvious draw-
back, namely cannot mine more contribution information from
unobserved POIs. Now our candidate module regards potential
feedback as intermediate feedback, which can alleviate the
situation. For user i, the ranking order of his preference for
positive, potential and negative feedback can be formulated as
follows:

j �i c ∧ c �i h⇔ j ∈ Pi ∧ c ∈ LPi ∧ h ∈ Ni, (8)

The pairwise ranking function can be further given:

r̂i,j,c,h (Θ) := x̂i,j � x̂i,c︸ ︷︷ ︸
:=r̂i,j,c

∧ x̂i,c � x̂i,h︸ ︷︷ ︸
:=r̂i,c,h

, (9)

where Θ denotes a set of parameters, r̂i,j,c,h (Θ) is the ranking
function that user i prefers POI j over POI c and prefers POI
c over POI h, and x̂i,j , x̂i,c and x̂i,h are the predicted check-in
frequencies.

Our proposed assumption is more general because any
feedback generated by context information in LBSNs can be
used as potential feedback. In addition, an opposite assumption
that potential POIs are likely to be unattractive is presented.
However, due to its poor performance in previous experiments
[12], we are not conducting research here.

2) Model Formulation:
Based on the above assumption, we can find accurate

personalized ranking for the user i by using the maximum
posterior estimator:

p(Θ| �i) ∝ p(�i |Θ)p(Θ), (10)

where p(�i |Θ) represents the likelihood function and p(Θ)
is the prior distribution of parameters Θ.

We use the same assumptions as [12]: (1) All users’ actions
are independent of each other. (2) The preference ordering of

Algorithm 1 Learning Algorithm
Require: feedback data: user i ∈ U , positive feedback Pi,

potential feedback LPi, and negative feedback Ni
hyperparameters: sampling times st, batch size bs, and
learning rate η

Ensure: model parameters Θ = {U,L}
1: Initialization Θ with Gamma distribution:
U ∼ Gamma(αU , βU ), L ∼ Gamma(αL, βL)

2: s = 0
3: for t = 1 to st do
4: Uniformly sample a user i from U
5: Uniformly sample a positive feedback j from Pi
6: Uniformly sample a potential feedback c from LPi
7: Uniformly sample a negative feedback h from Ni
8: end for
9: while (s+ 1) ∗ bs ≤ st do

10: for j = 1 to bs do
11: uik ← uik − η( ∂J

∂uik
)

12: ljk ← ljk − η( ∂J
∂ljk

)

13: lck ← lck − η( ∂J
∂lck

)

14: lhk ← lhk − η( ∂J
∂lhk

)
15: end for
16: s = s+ 1
17: end while
18: return Θ

each triple of items (j, c, h) for a specific user is independent



of the ordering of every other triple. Hence, the likelihood
function for all users can be given:

∏
i∈U

p(�i |Θ) =
∏

(i,j,c,h)∈U×L×L×L

p(x̂i,j � x̂i,c ∧ x̂i,c � x̂i,h|Θ)ζ((i,j,c,h)∈Ds)

(1− p (x̂i,j � x̂i,c ∧ x̂i,c � x̂i,h|Θ))
ζ((i,j,c,h)/∈Ds) ,

(11)

where Ds is a poset of >i:

Ds = {(i, j, c, h)|j ∈ Pi ∧ c ∈ LPi ∧ h ∈ Ni}

, and ζ(b) is an indicator function that equals to 1 if b is true,
otherwise equals to 0.

Due to the totality and antisymmetry of pairwise ordering
scheme, the above likelihood function can be simplified to:

∏
i∈U

p(�i |Θ) =
∏

i∈U,j∈Pi,c∈LPi

p(x̂i,j � x̂i,c|Θ)∏
i∈U,c∈LPi,h∈Ni,

p(x̂i,c � x̂i,h|Θ),
(12)

We apply a differential function (e.g. a sigmoid function
σ(x) = 1

1+e−x ) to approximate the function p(.) so that the
likelihood function is differentiable. Based on this trick, we
can obtain:

p(x̂i,j � x̂i,c|Θ) = σ(x̂i,j − x̂i,c), (13)

p(x̂i,c � x̂i,h|Θ) = σ(x̂i,c − x̂i,h), (14)

where x̂i,j − x̂i,c denotes the difference of two predicted
preference.

Since Poisson distribution is more suitable for fitting check-
in frequency data than Gaussian distribution [1], [2], we pro-
pose the Poisson Factor Factorization to model the difference
of two preference. Hence, Θ = (U,L) and x̂i,j = uT

i lj where
ui and lj represent latent feature vector of user-specific and
POI-specific.

For the p(Θ), we have:

p(Θ) =p(U |αU , βU )p(L|αL, βL)
m∏
i=1

d∏
k=1

uαU−1
ik exp(−uik/βU )

βαU

U Γ(αU )
×

n∏
j=1

d∏
k=1

lαL−1
jk exp(−ljk/βL)

βαL

L Γ(αL)
,

(15)

where αU , αL, βU , βL are parameters for Gamma distributions
and Γ(.) is the Gamma function.

Finally, we can give the objective function as follows:

J(Θ) = min
U,L
−
∑
i∈U

[ ∑
j∈Pi

∑
c∈LPi

lnσ(uT
i lj − uT

i lc)

+
∑
c∈LPi

∑
h∈Ni

lnσ(uT
i lc − uT

i lh)

]

−
m∑
i=1

d∑
k=1

((αU − 1)ln(uik/βU )− uik/βU )

−
n∑
j=1

d∑
k=1

((αL − 1)ln(ljk/βL)− ljk/βL),

(16)
3) Parameter Estimation:
The matrices U and L can be learned by solving the

optimization problem in (16). Here, we propose a Mini-batch
Gradient Descent with the bootstrap sampling to optimize the
objective function. The process of learning is to first sample
and then iteratively update model parameters. More details of
optimization are depicted in Algorithm 1. The gradients of the
objective function with respect to uik, ljk, lck and lhk are:

∂J

∂uik
=

1

βU
− αU − 1

uik
− (1− σ(uT

i lj − uT
i lc))(ljk − lck)

− (1− σ(uT
i lc − uT

i lh)(lck − lhk),
(17)

∂J

∂ljk
=

1

βL
− αL − 1

lik
− (1− σ(uT

i lj − uT
i lc))uik, (18)

∂J

∂lck
=

1

βL
− αL − 1

lik
− (1− σ(uT

i lj − uT
i lc))(−uik)

− (1− σ(uT
i lc − uT

i lh)uik,

(19)

∂J

∂lhk
=

1

βL
− αL − 1

lhk
− (1−σ(uT

i lv−uT
i lh))(−uik), (20)

Since a series of potential feedback generated in candidate
module can be precomputed, the computational complexity
of our framework PRFPF mainly consists of ranking module
learning and predicting preference. The computation of each
update gradient is O(d) [6], where d is the number of latent
feature dimensions. Thus the total complexity of ranking
module learning is O(st · d), where st is the sampling times.
Regarding predicting a user’s preference on a specific POI, its
complexity is O(d). From this perspective, the computational
complexity of PRFPF do not increase and is approximately
equal to BPR-MF [5].

C. Unified framework

For further generic, we specially design a unified Per-
sonalized Ranking Framework (named PRFPF) to integrate
candidate module and ranking module. In addition to ex-
ploiting social, geographical information, it can also integrate
other information (e.g., category and time) in LBSNs into the
framework. The overall architecture of the PRFPF is shown
in Fig.1.



Fig. 1. The architecture framework of PRFPF. The candidate module is used
to learn a series of potential feedback from unvisited POIs for each user. The
ranking module recommends a personalized top-N list of POIs for each user
by exploiting positive, potential, and negative feedback.

V. EXPERIMENTAL EVALUATION

In this section, we systematically evaluate the recommenda-
tion performance of our framework PRFPF and compare our
framework with some state-of-the-art POI recommendation
algorithms. All experiments are conducted on two large-
scale real-world LBSN datasets, collected from Yelp and
Foursquare.

A. Datasets

We use two publicly available real-world check-in datasets
that were collected from Yelp [19] and Foursquare [4]. Each
check-in contains the user ID, location ID, check-in time,
and geo-coordinates of the location. Users’ social links are
also provided in datasets. Since the user’s home is used in
the geographic model, we adopt the recursive grid method
[20] to estimate its geo-coordinates. Note that, for Yelp
and Foursquare datasets, we remove those users who have
checked-in less than 10 locations and those POIs which are
visited by less than 10 users. The statistics of these two
datasets are shown in Table I.

In our experiments, we divide each dataset into training set,
tuning set and test set in terms of the user’s check-in time
instead of choosing a random partition method. For each user,
the earliest 70% check-ins are selected for training, the most
recent 20% check-ins as testing, and the next 10% as tuning.

B. Evaluation Metrics

We utilize four popular metrics to evaluate the performance
of the model we proposed: precision (Pre@N), recall (Rec@N)
[9], mean average precision (MAP@N) [4] and normalized
discounted cumulative gain (NDCG@N) [19], where N is the
number of recommended POIs. For each metric, we calcu-
late the average performance of all users. We omit detailed
descriptions for saving space.

C. Baseline Methods

In order to demonstrate the benefits of our recommenda-
tion framework, we compare our model with the following
baselines for POI recommendation.

TABLE I
STATISTICAL INFORMATION OF THE TWO DATASETS

Statistical item Yelp Foursquare
Number of users 30,887 2,551
Number of POIs 18,995 13,474
Number of categories 624 10
Number of check-ins or ratings 860,888 124,933
Number of social links 265,533 32,512
User-POI matrix density 0.14% 0.291%

• GeoSoCa: This is a state-of-the-art personalized POI rec-
ommendation method that combines geographical, social,
and categorical information [9].

• SG: This is a typical recommendation approach that
integrates social and geographical information [8].

• MGMPFM: This is a recommendation framework based
on Poisson Factor Factorization, which exploits geo-
graphical influence with Multi-center features to recom-
mend POIs for users [1].

• GS2D: This method uses social and geographical influ-
ences to recommend POIs [21].

• iGSLR: This method integrates user preference, social
influence and personalized geographical influence into a
unified location recommendation framework [17].

• BPR-KNN: This is a ranking-based adaptive model,
which employs item-based k-nearest-neighbor to predict
ratings [5].

• BPR-MF: This is a classical pairwise ranking model
based on matrix factorization [5].

• GeoBPR: This method is a state-of-the-art method for
POI recommendation, which incorporates the geographic
feedback into the BPR model [12].

D. Parameter settings

For all the compared baselines, we adopt the optimal pa-
rameter reported in their works. In our experiments, all critical
parameters are tuned through cross-validation. Empirically,
for the social model, the parameters σ and ψ are set to 0.1
and 0.05, respectively. In Foursquare dataset, d is set to 50,
αU = αL = 20, βU = 0.05, βL = 0.3, t1 = t2 = 10, t3 = 5
and η = 0.005. In Yelp dataset, d = 100, αU = 30, αL = 15,
βU = 0.02, βL = 0.15, t1 = t2 = 20, t3 = 5 and η = 0.001.
The effect of latent factor dimension d will be detailed later.

E. Experimental Results

Performance Comparisons. The experimental results of
each recommendation algorithm in terms of Pre@N, Rec@N,
MAP@N and NDCG@N on Foursquare and Yelp are reported
in Fig.2 and Fig.3. From the performance comparison of all
algorithms in Fig.2, we can see that our framework achieves
the best performance in terms of all four metrics, which illus-
trates the superiority of our framework. On the one hand, com-
pared with non-ranking algorithms Geosoca, iGSLR, GS2D
and MGMPFM, our ranking framework presents an abso-
lute advantage. For instance, Pre@5, Rec@5, MAP@5 and
NDCG@5 are improved by around 43%, 35%, 25% and
57%, comparing to the best non-ranking approach MGMPFM.
In addition, the reason we guess MGMPFM performs well
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Fig. 2. Varying N on Foursquare
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Fig. 3. Varying N on Yelp

in these non-ranking models is that it employs the Poisson
distribution to fit the check-in frequency.

On the other hand, our framework significantly outper-
forms other three ranking algorithms BPR-KNN, BPR-MF
and GeoBPR. For example, PRFPF improves the second
best recommendation algorithm GeoBPR by 22.7%, 31.6%,
47.9% and 37.8% in terms of Pre@5, Rec@5, MAP@5
and NDCG@5, respectively. Based on the results of ranking
algorithms, two interesting observations are revealed. First, the
basic BPR methods like BPR-KNN or BPR-MF performs the
worst among all ranking algorithms. One possible explanation
is that the basic BPR methods only exploit preference order
between observed and non-observed feedback to learn to
rank. Second, the extended BPR methods GeoBPR has better
performance than the basic BPR methods. This is because it
uses geographic feedback to facilitate learning.

The performance on Foursquare is similar to that of Yelp,
and the specific analysis is omitted here. Finally, we sum-
maries two advantages in our framework by comparing all the
above eight baselines. (1) PRFPF effectively learns a series of
potential POIs from unvisited POIs by exploiting incorporating
social and geographical information so that assist ranking
learning. (2) PRFPF employs Poisson factor factorization to
model the difference of two preference prediction as Poisson
distribution is more suitable for fitting check-in frequency data
than Gaussian distribution.

Impact of Data Sparsity. Here, we study the effectiveness
of our model on sparse problems. In order to generate check-
in matrix with different sparsity, we we randomly reserve
x% (x= 50,70,90,100) of check-ins from each user’s visited
records. Fig.4 shows the overall results of all recommendation
algorithms on Foursquare under different sparsity. Here, the
smaller the reserved ratio x is, the sparser the check-in matrix

is. From the Fig.4, we find that the Pre@5 and Rec@5 of
all algorithms are increasing with the increase of the reserved
ratio x. A reasonable explanation is that, with the increase
of the proportion of the training set, the number of positive
examples increases, and then contributes to the improvement
on the Pre@5 and Rec@5. By comparing the results of ranking
and non-ranking models, we can observe that all the ranking
models consistently better than the non-ranking models in
terms of all four metrics under different sparsity. We guess the
reason is that the training set of ranking models is composed
of a large number of positive and negative examples. This
alleviates the sparsity of non-ranking methods to a certain
extent.

We can further see that our framework PRFPF consistently
outperforms all ranking and non-ranking baselines at different
densities, which demonstrates the effectiveness of PRFPF. This
may be attributed to the two pairwise preference assumption
in our framework: users’ preferences for visited POIs are
preferred over potential POIs, unvisited POIs are less preferred
than potential POIs.

Study of Influence of Latent Factor Dimension d. In
this study, we employ Poisson factor factorization (a matrix
factorization technique) to predict the difference between the
two scores of preference for users. Hence, it is necessary to
study the effect of sensitivity parameter d, where d is the
number of latent feature dimension. In our experiment, we set
d to 10, 30, 50, 70 and 90, respectively. We choose Foursquare
dataset to observe the performance of the recommendation.
Fig.5 shows that the recommended quality for different values
of d. From the figure we can observe that the performance
of the PRFPF increases with the increase of the d at the
beginning, then hits the highest recommended quality when
d = 50, and eventually tends to decline. The above trend
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Fig. 5. Influence of Latent Factor Dimensions d

indicates that the performance is best at d=50, and so we
finally choose the optimal parameter d=50.

VI. CONCLUSIONS

In this paper, we propose a novel personalized ranking
framework based on Poisson factor factorization, PRFPF, for
POI recommendation. The framework is composed of two
modules: candidate module and ranking module. The candi-
date module is used to generate a series of potential feedback
from unvisited POIs by exploiting social and geographical
information. Based on potential feedback, the ranking module
learns the personalized top-N ranked list of POIs by com-
paring two pairwise preferences: visited POIs and potential
POIs, potential POIs and unvisited POIs. PRFPF has good
scalability and can integrate other information besides the
two kinds of information used in this paper. Experimental
results on real-world Foursquare and Yelp datasets showed
that our framework is effective and significantly outperforms
other state-of-the-art approaches.
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